论文标题

基于脑电图的主要抑郁症和使用神经网络检测躁郁症检测:综述

EEG based Major Depressive disorder and Bipolar disorder detection using Neural Networks: A review

论文作者

Yasin, Sana, Hussain, Syed Asad, Aslan, Sinem, Raza, Imran, Muzammel, Muhammad, Othmani, Alice

论文摘要

精神障碍代表着关键的公共卫生挑战,因为它们是造成全球疾病负担的主要贡献者,并强烈影响个人的社会和金融福利。目前的全面综述集中在两种精神障碍上:重大抑郁症(MDD)和躁郁症(BD),并在过去十年中具有值得注意的出版物。如今,对具有生物标志物的精神疾病的表型表征非常需要。脑电图(EEG)信号可以为MDD和BD提供丰富的签名,然后他们可以提高对这些精神疾病下的病理生理机制的理解。在这篇评论中,我们专注于采用脑电图信号喂养的神经网络的文献作品。在使用脑电图和神经网络的研究中,我们讨论了针对抑郁症和躁郁症检测的各种基于脑电图的方案,生物标志物和公共数据集。我们以讨论和有价值的建议结束,这将有助于提高开发模型的可靠性,并在精神病学中基于更准确,更确定性的计算智能系统。对于使用EEG信号从事抑郁症和躁郁症识别的研究人员来说,这篇综述将被证明是一个结构化且有价值的初始点。

Mental disorders represent critical public health challenges as they are leading contributors to the global burden of disease and intensely influence social and financial welfare of individuals. The present comprehensive review concentrate on the two mental disorders: Major depressive Disorder (MDD) and Bipolar Disorder (BD) with noteworthy publications during the last ten years. There is a big need nowadays for phenotypic characterization of psychiatric disorders with biomarkers. Electroencephalography (EEG) signals could offer a rich signature for MDD and BD and then they could improve understanding of pathophysiological mechanisms underling these mental disorders. In this review, we focus on the literature works adopting neural networks fed by EEG signals. Among those studies using EEG and neural networks, we have discussed a variety of EEG based protocols, biomarkers and public datasets for depression and bipolar disorder detection. We conclude with a discussion and valuable recommendations that will help to improve the reliability of developed models and for more accurate and more deterministic computational intelligence based systems in psychiatry. This review will prove to be a structured and valuable initial point for the researchers working on depression and bipolar disorders recognition by using EEG signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源