论文标题
大规模的基准和用于连续碰撞检测的基于包容性的算法
A Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision Detection
论文作者
论文摘要
我们引入了一个大规模的基准,用于连续碰撞检测(CCD)算法,该算法由手动构建的查询组成,该查询是为了突出挑战性的退化病例,并使用现有模拟器自动生成以覆盖常见病例。我们使用基准来评估最先进的连续碰撞检测算法的准确性,正确性和效率,无论有没有最小的分离。我们发现,尽管CCD算法广泛使用,但现有的算法要么是:(1)正确但不切实际地慢,(2)有效但不正确,引入了虚假负面因素,这将导致互际渗透,或者(3)正确但过于保守的,但过于保守,会导致大量的虚假阳性在Inaccurace中,因此在Aneccurace insimatientiatientiation中会导致一家模拟器。通过结合Snyder在1992年引入的开创性间隔根发现算法与现代谓词设计技术,我们提出了一种简单有效的CCD算法。该算法在运行时与最先进的方法具有竞争力,同时保守地报告了影响时间,并允许在运行时效率和报告的假阳性数量之间进行明确的权衡。
We introduce a large scale benchmark for continuous collision detection (CCD) algorithms, composed of queries manually constructed to highlight challenging degenerate cases and automatically generated using existing simulators to cover common cases. We use the benchmark to evaluate the accuracy, correctness, and efficiency of state-of-the-art continuous collision detection algorithms, both with and without minimal separation. We discover that, despite the widespread use of CCD algorithms, existing algorithms are either: (1) correct but impractically slow, (2) efficient but incorrect, introducing false negatives which will lead to interpenetration, or (3) correct but over conservative, reporting a large number of false positives which might lead to inaccuracies when integrated in a simulator. By combining the seminal interval root finding algorithm introduced by Snyder in 1992 with modern predicate design techniques, we propose a simple and efficient CCD algorithm. This algorithm is competitive with state of the art methods in terms of runtime while conservatively reporting the time of impact and allowing explicit trade off between runtime efficiency and number of false positives reported.