论文标题
平方公里阵列科学数据挑战1:分析和结果
Square Kilometre Array Science Data Challenge 1: analysis and results
论文作者
论文摘要
作为世界上最大的射电望远镜,平方公里阵列(SKA)将领导下一代射电天文学。构建望远镜阵列所需的工程壮举仅与开发的技术相匹配,以利用数据的丰富科学价值。为了推动高效,准确的分析方法的发展,我们正在设计一系列数据挑战,这些数据挑战将为科学界提供高质量的数据集,用于测试和评估新技术。在本文中,我们介绍了第一个这样的科学数据挑战(SDC1)的描述和结果。基于SKA中连续模拟观测值,并涵盖了三个频率(560 MHz,1400MHz和9200 MHz),以三个深度(8 h,100 h和1000 h),SDC1要求参与者将源检测,表征和分类方法应用于模拟数据。挑战于2018年11月开始,在2019年4月的截止日期之前提交了9个团队。在这项工作中,我们分析了其中8个团队的结果,展示了可以成功地用于在深层而拥挤的领域中成功地找到,表征和分类来源的各种方法。结果还证明了建立领域知识和专业知识的重要性,以获得最佳性能。随着高分辨率观察开始揭示天空的真实复杂性,这种分析所带来的杰出挑战之一是能够像未解决的源人群一样有效地处理高度解决和复杂的来源。
As the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exploit the rich scientific value of the data. To drive forward the development of efficient and accurate analysis methods, we are designing a series of data challenges that will provide the scientific community with high-quality datasets for testing and evaluating new techniques. In this paper we present a description and results from the first such Science Data Challenge (SDC1). Based on SKA MID continuum simulated observations and covering three frequencies (560 MHz, 1400MHz and 9200 MHz) at three depths (8 h, 100 h and 1000 h), SDC1 asked participants to apply source detection, characterization and classification methods to simulated data. The challenge opened in November 2018, with nine teams submitting results by the deadline of April 2019. In this work we analyse the results for 8 of those teams, showcasing the variety of approaches that can be successfully used to find, characterise and classify sources in a deep, crowded field. The results also demonstrate the importance of building domain knowledge and expertise on this kind of analysis to obtain the best performance. As high-resolution observations begin revealing the true complexity of the sky, one of the outstanding challenges emerging from this analysis is the ability to deal with highly resolved and complex sources as effectively as the unresolved source population.