论文标题
通过卷积复发性神经网络分类的心电图分类
ECG Classification with a Convolutional Recurrent Neural Network
论文作者
论文摘要
我们开发了一个卷积复发性神经网络,以对12个铅ECG信号进行分类,以挑战2020年心脏病学中的Physionet/ Computing作为粉红色爱尔兰帽子的挑战。该模型结合了卷积和经常性层,将ECG信号的滑动窗口作为输入,并产生每个类作为输出的概率。卷积部分从每个滑动窗口提取特征。双向门控复发单元(GRU)层和注意力层将所有窗口的这些特征汇总到单个特征向量中。最后,密集的层输出类概率。最终决定是使用测试时间扩展(TTA)和优化的决策阈值做出的。我们的体系结构的几个超参数得到了优化,最重要的是优化器的选择和每个卷积层的过滤器数量。我们的网络在隐藏验证集中获得了0.511的挑战分数,在完整的隐藏测试集上达到了0.167,在官方排名中排名第23位。
We developed a convolutional recurrent neural network to classify 12-lead ECG signals for the challenge of PhysioNet/ Computing in Cardiology 2020 as team Pink Irish Hat. The model combines convolutional and recurrent layers, takes sliding windows of ECG signals as input and yields the probability of each class as output. The convolutional part extracts features from each sliding window. The bi-directional gated recurrent unit (GRU) layer and an attention layer aggregate these features from all windows into a single feature vector. Finally, a dense layer outputs class probabilities. The final decision is made using test time augmentation (TTA) and an optimized decision threshold. Several hyperparameters of our architecture were optimized, the most important of which turned out to be the choice of optimizer and the number of filters per convolutional layer. Our network achieved a challenge score of 0.511 on the hidden validation set and 0.167 on the full hidden test set, ranking us 23rd out of 41 in the official ranking.