论文标题
使用氢原子对石墨烯磁的原子尺度控制
Atomic-scale control of graphene magnetism using hydrogen atoms
论文作者
论文摘要
预计在石墨烯上吸收的分离氢原子会诱导磁矩。在这里,我们证明了单个氢原子在石墨烯上的吸附会诱导以fermi能量在费米能量约20 meV旋转状态为特征的磁矩。我们的扫描隧道显微镜(STM)实验,并得到了第一原理计算的补充,表明这种自旋极化状态基本上定位在碳质体的辅助性互补的,互补的H原子是化学物质的。这种原子调制的自旋文本从H原子延伸了几纳米,在异常长的距离之间驱动磁矩之间的直接耦合。使用STM尖端以原子精度操纵H原子,我们证明了定制选定石墨烯区域的磁性的可能性。
Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a ~20 meV spin-split state at the Fermi energy. Our scanning tunneling microscopy (STM) experiments, complemented by first-principles calculations, show that such a spin-polarized state is essentially localized on the carbon sublattice complementary to the one where the H atom is chemisorbed. This atomically modulated spin-texture, which extends several nanometers away from the H atom, drives the direct coupling between the magnetic moments at unusually long distances. Using the STM tip to manipulate H atoms with atomic precision, we demonstrate the possibility to tailor the magnetism of selected graphene regions.