论文标题
小型双轴菌株诱导的固有压电和铁磁性的共存,septuple-atomic-layer $ \ mathrm {vsi_2p_4} $
Coexistence of intrinsic piezoelectricity and ferromagnetism induced by small biaxial strain in septuple-atomic-layer $\mathrm{VSi_2P_4}$
论文作者
论文摘要
具有实验合成的$ \ mathrm {mosi_2n_4} $具有相同结构的Septuple-Atomic-Layer $ \ MATHRM {VSI_2P_4} $被预测是一个旋转缝隙的半导体(SGS)。在这项工作中,双轴应变被应用于$ \ mathrm {vsi_2p_4} $的调谐电子性能,并且随着从铁磁金属(FMM)到SGS到SGS到Ferromagnetic semicondactor(fms)到SGS fereromagnics fereromagnenical(ferromamagnic)(fm halferomagnic)(fmse)(fm)(fms)(fms)(fms)(fms)(fmsnic)(fmsnic)(fmsnic)(fmsnic)(fmsnic)(fmsnic)(fmsnic)(fmmermagnenice frermomAgnic),它跨越了广泛的特性。由于反转对称性,可以在FMS $ \ mathrm {VSI_2P_4} $中实现铁磁和压电的共存,其应变范围为0 \%至4 \%。计算出1 \%,2 \%和3 \%菌株的压力电离应变系数$ d_ {11} $分别为4.61 pm/v,4.94 pm/v和5.27 pm/v,它们的典型值大于或接近或接近典型的典型值,即典型的bulk bulk cizoelectric材料的典型值。最后,类似于$ \ mathrm {vsi_2p_4} $,可以通过$ \ mathrm {vsi_2n_4} $ monolayer在$ \ mathrm中的应变来实现压电和铁磁性的共存。我们的作品表明,$ \ mathrm {vsi_2p_4} $在FMS阶段具有内在的压电属性,可以在自旋电子设备中具有潜在的应用。
The septuple-atomic-layer $\mathrm{VSi_2P_4}$ with the same structure of experimentally synthesized $\mathrm{MoSi_2N_4}$ is predicted to be a spin-gapless semiconductor (SGS). In this work, the biaxial strain is applied to tune electronic properties of $\mathrm{VSi_2P_4}$, and it spans a wide range of properties upon the increasing strain from ferromagnetic metal (FMM) to SGS to ferromagnetic semiconductor (FMS) to SGS to ferromagnetic half-metal (FMHM). Due to broken inversion symmetry, the coexistence of ferromagnetism and piezoelectricity can be achieved in FMS $\mathrm{VSi_2P_4}$ with strain range of 0\% to 4\%. The calculated piezoelectric strain coefficients $d_{11}$ for 1\%, 2\% and 3\% strains are 4.61 pm/V, 4.94 pm/V and 5.27 pm/V, respectively, which are greater than or close to a typical value of 5 pm/V for bulk piezoelectric materials. Finally, similar to $\mathrm{VSi_2P_4}$, the coexistence of piezoelectricity and ferromagnetism can be realized by strain in the $\mathrm{VSi_2N_4}$ monolayer. Our works show that $\mathrm{VSi_2P_4}$ in FMS phase with intrinsic piezoelectric properties can have potential applications in spin electronic devices.