论文标题
运输噪声延迟炸
Delayed blow-up by transport noise
论文作者
论文摘要
对于圆环上的一些确定性非线性PDE,其解决方案可能会在有限的时间内爆炸,我们表明,在非线性项上的适当条件下,爆炸会被传输类型的多重噪声延迟,以一定的缩放限制。主要结果应用于3D Keller-Segel,3D Fisher-KPP和2D Kuramoto-Sivashinsky方程,可为具有很高概率的大初始数据提供长期存在。
For some deterministic nonlinear PDEs on the torus whose solutions may blow up in finite time, we show that, under suitable conditions on the nonlinear term, the blow-up is delayed by multiplicative noise of transport type in a certain scaling limit. The main result is applied to the 3D Keller-Segel, 3D Fisher-KPP and 2D Kuramoto-Sivashinsky equations, yielding long-time existence for large initial data with high probability.