论文标题

同时相关性和多样性:一种新的建议推理方法

Simultaneous Relevance and Diversity: A New Recommendation Inference Approach

论文作者

Liu, Yifang, Xu, Zhentao, An, Qiyuan, Yi, Yang, Wang, Yanzhi, Hastie, Trevor

论文摘要

相关性和多样性对于推荐系统的成功都很重要,因为它们可以帮助用户从大量项目中发现一套紧凑的候选人,这些候选人不仅有趣,而且还探索。面临的挑战是,相关性和多样性通常是传统推荐系统中的两个相互竞争目标,这是剥削和探索之间经典的权衡。传统上,较高的多样性通常意味着牺牲相关性,反之亦然。我们提出了一种新方法,即异质推断,该方法通过引入一种新的CF推理方式,负面对阳性,扩展了一般协作过滤(CF)。异构推论达到了不同的相关性,在一个建议模型中相关性和多样性相互支持为两个协作目标,而建议多样性是相关推理过程的固有结果。我们的方法受益于其简洁性和灵活性,适用于各种精致级别的各种建议方案/用例。我们在公共数据集和现实世界生产数据上进行的分析和实验表明,我们的方法同时超过了有关相关性和多样性的现有方法。

Relevance and diversity are both important to the success of recommender systems, as they help users to discover from a large pool of items a compact set of candidates that are not only interesting but exploratory as well. The challenge is that relevance and diversity usually act as two competing objectives in conventional recommender systems, which necessities the classic trade-off between exploitation and exploration. Traditionally, higher diversity often means sacrifice on relevance and vice versa. We propose a new approach, heterogeneous inference, which extends the general collaborative filtering (CF) by introducing a new way of CF inference, negative-to-positive. Heterogeneous inference achieves divergent relevance, where relevance and diversity support each other as two collaborating objectives in one recommendation model, and where recommendation diversity is an inherent outcome of the relevance inference process. Benefiting from its succinctness and flexibility, our approach is applicable to a wide range of recommendation scenarios/use-cases at various sophistication levels. Our analysis and experiments on public datasets and real-world production data show that our approach outperforms existing methods on relevance and diversity simultaneously.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源