论文标题
对象传输运动的识别和综合
Recognition and Synthesis of Object Transport Motion
论文作者
论文摘要
深度学习通常需要大量的培训示例才能成功使用。相反,动作捕获数据通常是昂贵的,需要专业设备以及演员来产生规定的动作,这意味着运动捕获数据集往往相对较小。然而,运动捕获数据确实提供了丰富的信息来源,这些信息源在各种应用程序中变得越来越有用,从人类机器人互动中的手势识别到数据驱动的动画。 该项目说明了如何在小型运动捕获数据集上使用深层卷积网络以及专业数据增强技术,以从特定类型的运动类型(对象传输)的序列中学习详细信息。该项目显示了如何将这些相同的增强技术扩展到更复杂的运动合成任务中。 通过探索生成对抗模型(GAN)概念(特别是Wasserstein gan)的最新发展,该项目概述了一个模型,该模型能够成功地生成寿命式的对象运输动作,并显示出生成的样品,显示出不同的样式和运输策略。
Deep learning typically requires vast numbers of training examples in order to be used successfully. Conversely, motion capture data is often expensive to generate, requiring specialist equipment, along with actors to generate the prescribed motions, meaning that motion capture datasets tend to be relatively small. Motion capture data does however provide a rich source of information that is becoming increasingly useful in a wide variety of applications, from gesture recognition in human-robot interaction, to data driven animation. This project illustrates how deep convolutional networks can be used, alongside specialized data augmentation techniques, on a small motion capture dataset to learn detailed information from sequences of a specific type of motion (object transport). The project shows how these same augmentation techniques can be scaled up for use in the more complex task of motion synthesis. By exploring recent developments in the concept of Generative Adversarial Models (GANs), specifically the Wasserstein GAN, this project outlines a model that is able to successfully generate lifelike object transportation motions, with the generated samples displaying varying styles and transport strategies.