论文标题
埃斯坦:增强的小肿瘤感知网络用于乳房超声图像分割
ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image Segmentation
论文作者
论文摘要
乳腺肿瘤分割是用于乳腺癌检测的计算机辅助诊断(CAD)系统的关键任务,因为准确的肿瘤大小,形状和位置对于进一步的肿瘤定量和分类很重要。然而,由于斑点噪声,患者之间的肿瘤形状和大小的变化以及肿瘤样图像区域的存在,因此在超声图像中细分小肿瘤是有挑战性的。最近,基于深度学习的方法在生物医学图像分析方面取得了巨大的成功,但是当前的最新方法可在细分小乳腺肿瘤方面的性能差。在本文中,我们提出了一种新型的深层神经网络结构,即增强的小肿瘤感知网络(埃斯坦),以准确稳健地分割乳腺肿瘤。埃斯坦(Estan)介绍了两个编码器,以在不同尺度上提取和融合图像上下文信息,并利用编码器中的行柱内核来适应乳房解剖结构。我们验证了提出的方法,并将其与使用七个定量指标的三个公共乳房超声数据集上的九种最先进的方法进行了比较。结果表明,所提出的方法实现了最佳的总体表现,并且在小肿瘤分割方面都优于所有其他方法。
Breast tumor segmentation is a critical task in computer-aided diagnosis (CAD) systems for breast cancer detection because accurate tumor size, shape and location are important for further tumor quantification and classification. However, segmenting small tumors in ultrasound images is challenging, due to the speckle noise, varying tumor shapes and sizes among patients, and the existence of tumor-like image regions. Recently, deep learning-based approaches have achieved great success for biomedical image analysis, but current state-of-the-art approaches achieve poor performance for segmenting small breast tumors. In this paper, we propose a novel deep neural network architecture, namely Enhanced Small Tumor-Aware Network (ESTAN), to accurately and robustly segment breast tumors. ESTAN introduces two encoders to extract and fuse image context information at different scales and utilizes row-column-wise kernels in the encoder to adapt to breast anatomy. We validate the proposed approach and compare it to nine state-of-the-art approaches on three public breast ultrasound datasets using seven quantitative metrics. The results demonstrate that the proposed approach achieves the best overall performance and outperforms all other approaches on small tumor segmentation.