论文标题
用于搜索黑暗能源调查的机器学习以寻找跨纳普尼亚物体
Machine Learning for Searching the Dark Energy Survey for Trans-Neptunian Objects
论文作者
论文摘要
在本文中,我们调查了与轨道拟合一起使用时,实施机器学习如何提高暗能量调查(DES)数据中对跨纳普对象(TNOS)的效率。在其轨道参数中似乎显示出相似性的多个TNO的发现导致了这样的建议,即外部太阳系中可能存在一个或多个未被发现的行星,即尚未发现的“行星9”。 DES可以很好地检测这种行星,并且已经被用来发现许多其他TNO。在这里,我们使用埋在真实的DES噪声数据中的模拟TNO组成的数据集对八种不同监督的机器学习算法进行测试。我们发现,表现最好的分类器是随机森林,当对它进行优化时,在检测稀有物体方面表现良好。我们在接收器操作特征(ROC)曲线(AUC)$ = 0.996 \ pm 0.001 $下实现一个区域。优化随机森林的决策阈值后,我们达到了0.96的召回,同时保持0.80的精度。最后,通过使用优化的分类器预选对象,我们能够快速运行检测管道的轨道拟合阶段五倍。
In this paper we investigate how implementing machine learning could improve the efficiency of the search for Trans-Neptunian Objects (TNOs) within Dark Energy Survey (DES) data when used alongside orbit fitting. The discovery of multiple TNOs that appear to show a similarity in their orbital parameters has led to the suggestion that one or more undetected planets, an as yet undiscovered "Planet 9", may be present in the outer Solar System. DES is well placed to detect such a planet and has already been used to discover many other TNOs. Here, we perform tests on eight different supervised machine learning algorithms, using a dataset consisting of simulated TNOs buried within real DES noise data. We found that the best performing classifier was the Random Forest which, when optimised, performed well at detecting the rare objects. We achieve an area under the receiver operating characteristic (ROC) curve, (AUC) $= 0.996 \pm 0.001$. After optimizing the decision threshold of the Random Forest, we achieve a recall of 0.96 while maintaining a precision of 0.80. Finally, by using the optimized classifier to pre-select objects, we are able to run the orbit-fitting stage of our detection pipeline five times faster.