论文标题
时间依赖性理性扩展的P OSCHL-TELLER电位及其某些特性
Time dependent rationally extended Poschl-Teller potential and some of its properties
论文作者
论文摘要
我们检查了具有振荡边界条件的时间依赖的Schr Odinger方程。更具体地说,我们使用可变技术的分离来构建时间依赖性的理性扩展的P OSCHL-Teller电位(其解决方案是由X1 Jacobi异常的正交多项式提供的)及其超对称伙伴,即P OSCHL-Teller电位。我们已经获得了Schr Odinger方程的精确溶液,并具有易于振荡类型的某些边界条件的上述电势。也为系统计算了许多物理量,例如平均能量,概率密度,期望值等,并相互比较。
We examine time dependent Schrodinger equation with oscillating boundary condition. More specifically, we use separation of variable technique to construct time dependent rationally extended Poschl-Teller potential (whose solutions are given by in terms of X1 Jacobi exceptional orthogonal polynomials) and its supersymmetric partner, namely the Poschl-Teller potential. We have obtained exact solutions of the Schrodinger equation with the above mentioned potentials subjected to some boundary conditions of the oscillating type. A number of physical quantities like the average energy, probability density, expectation values etc. have also been computed for both the systems and compared with each other.