论文标题
中子的均衡与中子 - 抗重物振荡一致
Parity of the neutron consistent with neutron-antineutron oscillations
论文作者
论文摘要
在对中子 - 抗重物振荡的分析中,最近在文献中争论的是,使用$iγ^{0} $均等$ n^{p} {p}(t, - \ vec {x}} = ig {x})=iγ^{0} n(0} n(t, - \ vec {x})的范围是一致的。 $ n^{p}(t, - \ vec {x})=γ^{0} n(t, - \ vec {x})$有一个困难。我们表明,对中子 - 抗抗原振荡的分析中的中子的普通平价转化的仔细处理。从技术上讲,质量对角度化过程中的CP对称性很重要,并且Pauli-GürseyTransformation赔偿了$iγ^{0} $奇偶校验和$γ^{0} $奇偶校验的两个奇偶校验转换。我们的分析表明,如果仔细治疗,则两种选择的均等能力都会给出中性抗抗振荡的正确结果。
In the analysis of neutron-antineutron oscillations, it has been recently argued in the literature that the use of the $iγ^{0}$ parity $n^{p}(t,-\vec{x})=iγ^{0}n(t,-\vec{x})$ which is consistent with the Majorana condition is mandatory and that the ordinary parity transformation of the neutron field $n^{p}(t,-\vec{x}) = γ^{0}n(t,-\vec{x})$ has a difficulty. We show that a careful treatment of the ordinary parity transformation of the neutron works in the analysis of neutron-antineutron oscillations. Technically, the CP symmetry in the mass diagonalization procedure is important and the two parity transformations, $iγ^{0}$ parity and $γ^{0}$ parity, are compensated for by the Pauli-Gürsey transformation. Our analysis shows that either choice of the parity gives the correct results of neutron-antineutron oscillations if carefully treated.