论文标题

使用可编程超导处理器实现量子生成的对抗网络

Realizing a quantum generative adversarial network using a programmable superconducting processor

论文作者

Huang, Kaixuan, Wang, Zheng-An, Song, Chao, Xu, Kai, Li, Hekang, Wang, Zhen, Guo, Qiujiang, Song, Zixuan, Liu, Zhi-Bo, Zheng, Dongning, Deng, Dong-Ling, Wang, H., Tian, Jian-Guo, Fan, Heng

论文摘要

生成对抗网络是一种新兴技术,在机器学习中具有广泛的应用,在包括图像和视频生成在内的许多具有挑战性的任务中取得了巨大的成功。配备量子处理器时,其量子对应物(Qgans)被称为量子生成对抗网络(QGANS) - 甚至可能在某些机器学习应用中表现出指数优势。在这里,我们使用可编程超导处理器报告了QGAN的实验实现,其中生成器和鉴别器都是通过单量和多数量子门的层进行参数化的。编程的QGAN可以自动运行几轮的对抗性学习,并使用量子梯度来实现NASH平衡点,在此过程中,发电机可以复制模仿训练集的数据样本。我们的实施有望扩大到嘈杂的中间尺度量子设备,从而为使用近期量子技术在实际应用中为量子优势的实验探索铺平了道路。

Generative adversarial networks are an emerging technique with wide applications in machine learning, which have achieved dramatic success in a number of challenging tasks including image and video generation. When equipped with quantum processors, their quantum counterparts--called quantum generative adversarial networks (QGANs)--may even exhibit exponential advantages in certain machine learning applications. Here, we report an experimental implementation of a QGAN using a programmable superconducting processor, in which both the generator and the discriminator are parameterized via layers of single- and multi-qubit quantum gates. The programmed QGAN runs automatically several rounds of adversarial learning with quantum gradients to achieve a Nash equilibrium point, where the generator can replicate data samples that mimic the ones from the training set. Our implementation is promising to scale up to noisy intermediate-scale quantum devices, thus paving the way for experimental explorations of quantum advantages in practical applications with near-term quantum technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源