论文标题
在高阶局部和非本地重力中的重力波的考虑
Considerations on gravitational waves in higher-order local and non-local gravity
论文作者
论文摘要
重力波模式和极化的检测可能构成一个非常重要的签名,以区分不同的重力理论。根据该陈述,有可能证明高阶非局部重力具有正式的高阶局部重力重力谱。 In particular, we consider the cases of $f \left( R, \Box R, \Box^2 R, \cdots, \Box^n R \right) = R + \sum_{i=1}^n α_i R \Box^i R$ gravity, linear with respect to both $R$ and $\Box^i R$ and $ f \left( R, \Box R \right) = R + α\ left(\ box r \右)^2 $重力,相对于$ \ box r $二次,如果与一般相对性相比,它被证明了重力振幅的变化。我们还获得了高阶非本地引力$ f \ left(r,\ box^{ - 1} r,\ box^{ - 2} r,\ cdots,\ box^{ - n} r \ right)= r + sum__ = 1}^nα__ir \ r \ y $的引力光谱(在这种情况下,我们具有三种两极分化状态和$ n+3 $振荡模式。更详细地说,可以得出两个横向张量$(+)$和$(\ times)$频率$ω__{1} $的标准极化模式,无质量和2螺旋; $ n+1 $进一步的标量模式$ $ω__{2},\ dots,ω_{n+2} $,巨大且具有0螺旋,每种都具有相同的混合极化,部分是纵向和部分横向的。
The detection of gravitational wave modes and polarizations could constitute an extremely important signature to discriminate among different theories of gravity. According to this statement, it is possible to prove that higher-order non-local gravity has formally the same gravitational spectrum of higher-order local gravity. In particular, we consider the cases of $f \left( R, \Box R, \Box^2 R, \cdots, \Box^n R \right) = R + \sum_{i=1}^n α_i R \Box^i R$ gravity, linear with respect to both $R$ and $\Box^i R$ and $ f \left( R, \Box R \right) = R + α\left(\Box R\right)^2 $ gravity, quadratic with respect to $\Box R$, where it is demonstrated the graviton amplitude changes if compared with General Relativity. We also obtain the gravitational spectrum of higher-order non-local gravity $ f \left( R, \Box^{-1} R, \Box^{-2} R, \cdots, \Box^{-n} R \right) = R + \sum_{i=1}^n α_i R \Box^{-i} R$. In this case, we have three state of polarization and $n+3$ oscillation modes. More in detail, it is possible to derive two transverse tensor $(+)$ and $(\times)$ standard polarization modes of frequency $ω_{1}$, massless and with 2-helicity; $n+1$ further scalar modes of frequency $ω_{2},\dots,ω_{n+2}$, massive and with 0-helicity, each of which has the same mixed polarization, partly longitudinal and partly transverse.