论文标题

从有限数据中对未知平滑系统的即时控制

On-The-Fly Control of Unknown Smooth Systems from Limited Data

论文作者

Djeumou, Franck, Vinod, Abraham P., Goubault, Eric, Putot, Sylvie, Topcu, Ufuk

论文摘要

我们研究了具有未知非线性动力学的数据驱动的,即时控制系统的问题,其中仅来自单个有限的轨迹的数据以及有关动力学的侧面信息。这些侧面信息可能包括了解动态的规律性,状态的单调性或在国家之间的动态中脱钩的知识。具体来说,我们开发了两种算法,$ \ texttt {datareach} $和$ \ texttt {dataControl} $,以超越符合即可到达系统的可触发设置和设计控制系统的控制信号。 $ \ texttt {datareach} $构建一个包含未知向量字段的差分包含。然后,它基于基于泰勒的间隔方法来计算可触及集的过度透明度,该方法应用于具有描述为差异包含的动力学的系统。 $ \ texttt {dataControl} $使用计算的过度透明度和回收 - 摩恩控制框架启用基于convex-oftimization-oftimization of-timerization。我们提供了其次优的界限,并表明更多数据和侧面信息启用$ \ texttt {dataControl} $,以达到更严格的次级优势范围。最后,我们证明了$ \ texttt {datacontrol} $在控制独轮车和四摩托系统的问题上的功效。

We investigate the problem of data-driven, on-the-fly control of systems with unknown nonlinear dynamics where data from only a single finite-horizon trajectory and possibly side information on the dynamics are available. Such side information may include knowledge of the regularity of the dynamics, monotonicity of the states, or decoupling in the dynamics between the states. Specifically, we develop two algorithms, $\texttt{DaTaReach}$ and $\texttt{DaTaControl}$, to over-approximate the reachable set and design control signals for the system on the fly. $\texttt{DaTaReach}$ constructs a differential inclusion that contains the unknown vector field. Then, it computes an over-approximation of the reachable set based on interval Taylor-based methods applied to systems with dynamics described as differential inclusions. $\texttt{DaTaControl}$ enables convex-optimization-based, near-optimal control using the computed over-approximation and the receding-horizon control framework. We provide a bound on its suboptimality and show that more data and side information enable $\texttt{DaTaControl}$ to achieve tighter suboptimality bounds. Finally, we demonstrate the efficacy of $\texttt{DaTaControl}$ over existing approaches on the problems of controlling a unicycle and quadrotor systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源