论文标题
用于预测分子特性的异质分子图神经网络
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
论文作者
论文摘要
由于它们具有建模复杂相互作用的巨大潜力,因此基于图形神经网络(GNN)的方法已被广泛用于预测分子的量子机械性能。大多数现有方法将分子视为分子图,其中原子被建模为节点。它们通过建模其成对相互作用与分子中的其他原子来表征每个原子的化学环境。尽管这些方法取得了巨大的成功,但有限的作品明确地考虑了多体相互作用,即三个和更多原子之间的相互作用。在本文中,我们介绍了分子,异质分子图(HMG)的新图形表示,其中节点和边缘具有多种类型,以模拟多体相互作用。 HMG有可能携带复杂的几何信息。为了利用HMG中存储的丰富信息来解决化学预测问题,我们基于神经信息传递方案构建了异质分子图神经网络(HMGNN)。 HMGNN将全球分子表示和注意机制纳入预测过程。 HMGNN的预测是原子坐标的翻译和旋转的不变,以及原子指数的排列。我们的模型在QM9数据集的12个任务中的9个任务中有9个实现了最先进的性能。
As they carry great potential for modeling complex interactions, graph neural network (GNN)-based methods have been widely used to predict quantum mechanical properties of molecules. Most of the existing methods treat molecules as molecular graphs in which atoms are modeled as nodes. They characterize each atom's chemical environment by modeling its pairwise interactions with other atoms in the molecule. Although these methods achieve a great success, limited amount of works explicitly take many-body interactions, i.e., interactions between three and more atoms, into consideration. In this paper, we introduce a novel graph representation of molecules, heterogeneous molecular graph (HMG) in which nodes and edges are of various types, to model many-body interactions. HMGs have the potential to carry complex geometric information. To leverage the rich information stored in HMGs for chemical prediction problems, we build heterogeneous molecular graph neural networks (HMGNN) on the basis of a neural message passing scheme. HMGNN incorporates global molecule representations and an attention mechanism into the prediction process. The predictions of HMGNN are invariant to translation and rotation of atom coordinates, and permutation of atom indices. Our model achieves state-of-the-art performance in 9 out of 12 tasks on the QM9 dataset.