论文标题

在纳米级电路中连贯电子传输的可能性

Possibility of coherent electron transport in a nanoscale circuit

论文作者

Hagmann, Mark J.

论文摘要

其他人则解决了Schrödinger方程,以估计指定电势下两个电极之间的隧穿电流,或者假设事件波会导致一个反射波和一个传输波,或者通过潜在屏障的传输。但是,这在某些纳米级电路中可能不合适,因为无电子均值路径可能长达金属中的68 nm。因此,如果电子与导体表面的相互作用和晶界的表面相互作用,则波函数在电路中的整个金属组件中可能是连贯的,从而减少了无均值路径。我们考虑使用单晶电线,并包括一个隧道连接处,以聚焦和对轴附近的电子填充,以进一步减少其与电线表面的相互作用。我们的模拟表明,除了不连贯的现象外,纳米级电路中还有极明确的连贯模式。为算法提供了示例,以确定这些模式的参数集。提出了其他算法,以确定电路中波函数和电流分布中的归一化系数。这是仅使用与微积分的代数来完成的,用于施罗丁方程的分析溶液。

Others have solved the Schrödinger equation to estimate the tunneling current between two electrodes at specified potentials, or the transmission through a potential barrier, assuming that an incident wave causes one reflected wave and one transmitted wave. However, this may not be appropriate in some nanoscale circuits because the electron mean-free path may be as long as 68 nm in metals. Thus, the wavefunction may be coherent throughout the metal components in a circuit if the interaction of the electrons with the surface of conductors and grain boundaries, which reduces the mean-free path, is reduced. We consider the use of single-crystal wires, and include a tunneling junction to focus and collimate the electrons near the axis, to further reduce their interaction with the surface of the wire. Our simulations suggest that, in addition to the incoherent phenomena, there are extremely sharply-defined coherent modes in nanoscale circuits. Algorithms are presented with examples to determine the sets of the parameters for these modes. Other algorithms are presented to determine the normalized coefficients in the wavefunction and the distribution of current in the circuits. This is done using only algebra with calculus for analytical solutions of the Schrödinger equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源