论文标题
使用直接融合驱动器来探索跨北河对象
Exploration of trans-Neptunian objects using the Direct Fusion Drive
论文作者
论文摘要
直接融合驱动器(DFD)是一种核融合发动机,将为任何航天器提供推力和电力。它是一种紧凑的引擎,基于D -$^{3} $ Aneutronic Fusion反应,该反应使用普林斯顿田场反向的配置进行等离子体限制和一种奇怪的平价旋转磁场作为加热方法,以实现核融合(Cohen等人,2019年),这将加热Deuterium,也将加热Deuterium。 \在这项工作中,我们提出了使用DFD探索太阳系外边界的可能性。目的是在不到10年的时间内到达一些跨北河的物体,例如矮星,埃里斯和豪伊亚,有效载荷质量至少为1500 kg,以便从科学观察到现场操作,可以实现各种任务。对于每个任务,都考虑了推力海岸捕捞轮廓。因此,每个任务分为3个阶段:i。逃避地球重力的螺旋轨迹; ii。星际旅行,从地球影响力的出口到沿海阶段的尽头; iii。与矮星相反的动作。提出了每个操纵的推进剂质量消耗,初始和最终质量,速度和$ΔV$。还提出了在125 au处到达附近的计算,以研究太阳磁层以及通过Flyby的Eris进行研究,对不同加速阶段的影响感兴趣。 我们的计算表明,DFD推进的航天器将在有限的时间内开放前所未有的可能性,以探索太阳系的边界,并且具有很高的有效载荷与推进剂群众比率。
The Direct Fusion Drive (DFD) is a nuclear fusion engine that will provide thrust and electrical power for any spacecraft. It is a compact engine, based on the D -$^{3}$He aneutronic fusion reaction that uses the Princeton field reversed configuration for the plasma confinement and an odd parity rotating magnetic field as heating method to achieve nuclear fusion (Cohen et al., 2019), which will heat the deuterium, also used as propellant. \par In this work we present possibilities to explore the solar system outer border using the DFD. The objective is to reach some trans-Neptunian object, such as the dwarf planets Makemake, Eris and Haumea in less than 10 years with a payload mass of at least of 1500 kg, so that it would enable all kind of missions, from scientific observation to in-situ operations. For each mission a thrust-coast-thrust profile is considered. For this reason, each mission is divided into 3 phases: i. the spiral trajectory to escape Earth gravity; ii. the interplanetary travel, from the exit of Earth sphere of influence to the end of the coasting phase; iii. maneuvers to rendezvous with the dwarf planet. Propellant mass consumption, initial and final masses, velocities and $ΔV$ for each maneuver are presented. Calculations to reach a vicinity at 125 AU for the study of Sun magnetosphere as well as Eris via flyby are also presented, with interest on the influence of different acceleration phases. Our calculations show that a spacecraft propelled by DFD will open unprecedented possibilities to explore the border of the solar system, in a limited amount of time and with a very high payload to propellant masses ratio.