论文标题

亚公里尺寸的粘性碎石小行星的关键自旋周期:对材料参数的依赖性

Critical spin periods of sub-km-sized cohesive rubble-pile asteroids: dependencies on material parameters

论文作者

Hu, Shoucun, Richardson, Derek C., Zhang, Yun, Ji, Jianghui

论文摘要

在这项工作中,我们采用具有内聚力实现的软球离散元素方法,以模拟连续旋转下的亚km尺寸粘性碎石桩的动态过程。探索了几个物质参数的关键旋转周期的依赖性$ t_c $的块状瓦砾桩,并探索不同散装直径$ d $的瓦砾桩。我们的数值模拟表明,模型中颗粒内凝聚力和粒子形状参数的增加都可以增强身体,尤其是对于较小的物体。此外,我们发现存在一些关键直径$ d_ {cri,ρ} $,其中$ t_c $的变化趋势随散装密度$ρ$ reverses。尽管更大的静态摩擦系数$μ_s$可以增强身体,但这种效果在关键直径$ d_ {cri,ϕ} $接近$ d_ {cri,ρ} $下达到最低。连续理论(分析方法)用于比较,并获得了两个等效的临界直径。数值结果与分析方法拟合,颗粒内凝聚力$ c $与批量内聚力$ c $的比率约为88.3。我们发现,对于不同的$ C $和$ρ$,该比率保持恒定,而这很大程度上取决于摩擦角$ ϕ $。同样,我们的数值结果进一步表明,$ t_c $对$ ϕ $的依赖性与$ d $ <$ <$ d_ {cri,ϕ} $的预测相反。最后,我们发现当身体的平均正常应力等于零时,这两个临界直径恰好接近直径,这是压缩态度和拉伸状态之间的分离。

In this work, we employ a soft-sphere discrete element method with a cohesion implementation to model the dynamical process of sub-km-sized cohesive rubble piles under continuous spinup. The dependencies of critical spin periods $T_c$ on several material parameters for oblate rubble piles with different bulk diameters $D$ are explored. Our numerical simulations show that both the increase of interparticle cohesion and particle shape parameter in our model can strengthen the bodies, especially for the smaller ones. In addition, we find there exists some critical diameter $D_{cri,ρ}$ at which the variation trend of $T_c$ with the bulk density $ρ$ reverses. Though a greater static friction coefficient $μ_S$ can strengthen the body, this effect attains a minimum at a critical diameter $D_{cri,ϕ}$ close to $D_{cri,ρ}$. The continuum theory (analytical method) is used for comparison and two equivalent critical diameters are obtained. The numerical results were fitted with the analytical method and the ratio of the interparticle cohesion $c$ to the bulk cohesion $C$ is estimated to be roughly 88.3. We find this ratio keeps constant for different $c$ and $ρ$, while it strongly depends on the friction angle $ϕ$. Also, our numerical results further show that the dependency of $T_c$ on $ϕ$ is opposite from that predicted by the continuum theory when $D$ < $D_{cri,ϕ}$. Finally, we find that the two critical diameters happen to be close to the diameter when the mean normal stress of the body equals zero, which is the separation between the compressive regime and the tensile regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源