论文标题

量化图像压缩对光学显微镜中监督学习应用的影响

Quantifying the effect of image compression on supervised learning applications in optical microscopy

论文作者

Pomarico, Enrico, Schmidt, Cédric, Chays, Florian, Nguyen, David, Planchette, Arielle, Tissot, Audrey, Roux, Adrien, Pagès, Stéphane, Batti, Laura, Clausen, Christoph, Lasser, Theo, Radenovic, Aleksandra, Sanguinetti, Bruno, Extermann, Jérôme

论文摘要

光学显微镜中数据吞吐量的令人印象深刻的增长触发了在压缩图像数据集上运行的监督学习(SL)模型的广泛使用,以进行有效的自动分析。但是,由于产生不可预测的人工制品的损耗图像压缩风险,因此量化数据压缩对SL应用的影响对于评估其可靠性至关重要,尤其是对于临床使用。我们提出了一种实验方法,以评估2D和3D细胞分割SL任务中图像压缩变形的耐受性:将压缩数据的预测与原始预测不确定性进行比较,原始预测不确定性是从通过传感器校准测得的原始噪声统计量进行数值估计的。我们表明,对对象和图像特异性分割参数的预测可以在16-8位降采样或JPEG压缩后,最多可更改15%和10个标准偏差。相比之下,最近开发的无损压缩算法提供了一种预测扩散,在统计学上等同于原始噪声,同时提供的压缩比最高为10:1。通过将下限设置为SL预测性不确定性,我们的技术可以推广以验证SL辅助领域中的各种数据分析管道。

The impressive growth of data throughput in optical microscopy has triggered a widespread use of supervised learning (SL) models running on compressed image datasets for efficient automated analysis. However, since lossy image compression risks to produce unpredictable artifacts, quantifying the effect of data compression on SL applications is of pivotal importance to assess their reliability, especially for clinical use. We propose an experimental method to evaluate the tolerability of image compression distortions in 2D and 3D cell segmentation SL tasks: predictions on compressed data are compared to the raw predictive uncertainty, which is numerically estimated from the raw noise statistics measured through sensor calibration. We show that predictions on object- and image-specific segmentation parameters can be altered by up to 15% and more than 10 standard deviations after 16-to-8 bits downsampling or JPEG compression. In contrast, a recently developed lossless compression algorithm provides a prediction spread which is statistically equivalent to that stemming from raw noise, while providing a compression ratio of up to 10:1. By setting a lower bound to the SL predictive uncertainty, our technique can be generalized to validate a variety of data analysis pipelines in SL-assisted fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源