论文标题

跨域的语义分割的亲和力空间适应

Affinity Space Adaptation for Semantic Segmentation Across Domains

论文作者

Zhou, Wei, Wang, Yukang, Chu, Jiajia, Yang, Jiehua, Bai, Xiang, Xu, Yongchao

论文摘要

通过深度学习,语义细分和密集的像素注释的良好表现。但是,野外语义细分的概括仍然具有挑战性。在本文中,我们解决了语义分割中无监督域适应(UDA)的问题。由于源和目标域具有不变的语义结构,我们建议通过利用在结构化语义分割的输出中利用成对像素之间的共发生模式来利用这种不变性。这与大多数现有的方法不同,这些方法试图根据图像,功能或输出级别中的单个像素信息来调整域。具体而言,我们对源和目标域的亲和力空间之间的亲和力关系进行域适应性。为此,我们制定了两个亲和力空间适应策略:亲和力空间清洁和对抗性亲和力空间对齐。广泛的实验表明,该提出的方法在几种具有挑战性的基准上,在跨领域的语义分割方面具有出色的性能。该代码可在https://github.com/idealwei/asanet上找到。

Semantic segmentation with dense pixel-wise annotation has achieved excellent performance thanks to deep learning. However, the generalization of semantic segmentation in the wild remains challenging. In this paper, we address the problem of unsupervised domain adaptation (UDA) in semantic segmentation. Motivated by the fact that source and target domain have invariant semantic structures, we propose to exploit such invariance across domains by leveraging co-occurring patterns between pairwise pixels in the output of structured semantic segmentation. This is different from most existing approaches that attempt to adapt domains based on individual pixel-wise information in image, feature, or output level. Specifically, we perform domain adaptation on the affinity relationship between adjacent pixels termed affinity space of source and target domain. To this end, we develop two affinity space adaptation strategies: affinity space cleaning and adversarial affinity space alignment. Extensive experiments demonstrate that the proposed method achieves superior performance against some state-of-the-art methods on several challenging benchmarks for semantic segmentation across domains. The code is available at https://github.com/idealwei/ASANet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源