论文标题
深度选择性组合嵌入和光场超分辨率的一致性正则化
Deep Selective Combinatorial Embedding and Consistency Regularization for Light Field Super-resolution
论文作者
论文摘要
手持设备获得的光场(LF)图像通常会遭受低空间分辨率的影响,因为必须与角度分辨率共享有限的检测器分辨率。因此,LF空间超分辨率(SR)成为LF摄像机处理管道中必不可少的部分。 LF图像的高维特性和复杂的几何结构使问题比传统的单像SR更具挑战性。现有方法的性能仍然受到限制,因为它们无法彻底探索LF子孔径图像(SAI)之间的连贯性,并且不足以准确保留场景的视差结构。为了应对这一挑战,我们提出了一个新型的基于学习的LF空间SR框架。具体而言,通过探索选择性组合几何嵌入SAIS之间的互补信息,首先是LF图像的每个SAI,首先是粗糙和单独分辨的。为了获得互补信息的有效选择,我们提出了两个新型的子模块,从分层进行:贴片选择器提供了一个基于离线差异估计的相似图像贴片的选项,以处理大差异相关性; SAI选择器适应,灵活地选择最有用的SAI来提高嵌入效率。为了保留重建的SAI之间的视差结构,我们随后附加了一个一致性正则化网络,该网络对结构感知的损失函数进行了训练,以优化在粗估计中的视差关系。此外,我们将提出的方法扩展到不规则的LF数据。据我们所知,这是第一种基于学习的LF数据的SR方法。合成和现实世界LF数据集的实验结果证明了我们的方法比最先进的方法具有显着优势。
Light field (LF) images acquired by hand-held devices usually suffer from low spatial resolution as the limited detector resolution has to be shared with the angular dimension. LF spatial super-resolution (SR) thus becomes an indispensable part of the LF camera processing pipeline. The high-dimensionality characteristic and complex geometrical structure of LF images make the problem more challenging than traditional single-image SR. The performance of existing methods is still limited as they fail to thoroughly explore the coherence among LF sub-aperture images (SAIs) and are insufficient in accurately preserving the scene's parallax structure. To tackle this challenge, we propose a novel learning-based LF spatial SR framework. Specifically, each SAI of an LF image is first coarsely and individually super-resolved by exploring the complementary information among SAIs with selective combinatorial geometry embedding. To achieve efficient and effective selection of the complementary information, we propose two novel sub-modules conducted hierarchically: the patch selector provides an option of retrieving similar image patches based on offline disparity estimation to handle large-disparity correlations; and the SAI selector adaptively and flexibly selects the most informative SAIs to improve the embedding efficiency. To preserve the parallax structure among the reconstructed SAIs, we subsequently append a consistency regularization network trained over a structure-aware loss function to refine the parallax relationships over the coarse estimation. In addition, we extend the proposed method to irregular LF data. To the best of our knowledge, this is the first learning-based SR method for irregular LF data. Experimental results over both synthetic and real-world LF datasets demonstrate the significant advantage of our approach over state-of-the-art methods.