论文标题
多范围电势的晶格压力张量的结构和各向同性
Structure and Isotropy of Lattice Pressure Tensors for Multi-range Potentials
论文作者
论文摘要
我们系统地分析了具有多范围相互作用的一类多相晶格玻尔兹曼模型(LBM)的晶格压力张量的张力结构。由于晶格离散效应,我们表明晶格相互作用力的内置各向同性特性不一定在相应的晶格压力张量中反映。这一发现为构建迫使方案的观点带来了不同的观点,通过合适的多范围电位选择实现了晶格压力张量的所需各向同性。作为立即应用,获得的LBM强迫方案通过非理想平衡接口的数值模拟进行了测试,并显示出对强迫仅通过强制迫使同位素要求获得的方案而产生的较弱且在空间上延伸的弹性电流较少。从一般的角度来看,提出的分析产生了一种实施强迫对称性的方法,从未在LBM的Shan-chen方法的框架内探索过。我们认为这将有助于对非理想界面的未来研究。
We systematically analyze the tensorial structure of the lattice pressure tensors for a class of multi-phase lattice Boltzmann models (LBM) with multi-range interactions. Due to lattice discrete effects, we show that the built-in isotropy properties of the lattice interaction forces are not necessarily mirrored in the corresponding lattice pressure tensor. This finding opens a different perspective for constructing forcing schemes, achieving the desired isotropy in the lattice pressure tensors via a suitable choice of multi-range potentials. As an immediate application, the obtained LBM forcing schemes are tested via numerical simulations of non-ideal equilibrium interfaces and are shown to yield weaker and less spatially extended spurious currents with respect to forcing schemes obtained by forcing isotropy requirements only. From a general perspective, the proposed analysis yields an approach for implementing forcing symmetries, never explored so far in the framework of the Shan-Chen method for LBM. We argue this will be beneficial for future studies of non-ideal interfaces.