论文标题
修补晶格:对ERDS距离问题的新景象
Tinkering with Lattices: A New Take on the Erdős Distance Problem
论文作者
论文摘要
ERDS距离问题涉及飞机上可以通过$ n $点确定的不同距离数量最少。带有$ n $点的整数晶格称为\ textit {近最佳},因为它跨越$θ(n/\ sqrt {\ log log(n)})$不同的距离,$ n $点的下限(erdős,1946年)。与ERDS距离问题有关的唯一以前的非反应工作是$ n \ leq 13 $。在模型案例中,我们采用了一种新的非反应方法来研究此问题,研究距离分布或换句话说,是$ n \ times n $ n $ integer晶格的每个距离的频率图。为了充分表征此分布,我们调整了Fermat和Erds的先前数字理论结果,以便将晶格上给定距离的频率与平方符号公式相关联。 我们研究所有晶格可能子集的距离分布;尽管这是一个受限的情况,但整数晶格的结构允许存在可以选择的子集,以便其距离分布具有某些属性,例如模拟某些小子集的随机分布点集的分布,或模仿较大的晶格本身的分布。我们定义了一个错误,该错误将子集的距离分布与完整晶格的距离分布进行了比较。整数晶格的结构使我们能够采用具有某些几何特性的子集,以最大化误差。我们明确显示这些几何结构。此外,当子集中的点数为$ 4 $,$ 5 $,$ 9 $或$ \ left \ lceil n^2/2 \ right \ rceil $时,我们计算出误差的显式上限,并证明有少量点的情况。
The Erdős distance problem concerns the least number of distinct distances that can be determined by $N$ points in the plane. The integer lattice with $N$ points is known as \textit{near-optimal}, as it spans $Θ(N/\sqrt{\log(N)})$ distinct distances, the lower bound for a set of $N$ points (Erdős, 1946). The only previous non-asymptotic work related to the Erdős distance problem that has been done was for $N \leq 13$. We take a new non-asymptotic approach to this problem in a model case, studying the distance distribution, or in other words, the plot of frequencies of each distance of the $N\times N$ integer lattice. In order to fully characterize this distribution, we adapt previous number-theoretic results from Fermat and Erdős in order to relate the frequency of a given distance on the lattice to the sum-of-squares formula. We study the distance distributions of all the lattice's possible subsets; although this is a restricted case, the structure of the integer lattice allows for the existence of subsets which can be chosen so that their distance distributions have certain properties, such as emulating the distribution of randomly distributed sets of points for certain small subsets, or emulating that of the larger lattice itself. We define an error which compares the distance distribution of a subset with that of the full lattice. The structure of the integer lattice allows us to take subsets with certain geometric properties in order to maximize error; we show these geometric constructions explicitly. Further, we calculate explicit upper bounds for the error when the number of points in the subset is $4$, $5$, $9$ or $\left \lceil N^2/2\right\rceil$ and prove a lower bound in cases with a small number of points.