论文标题
在最短的微透明事件中检测到的陆地质量流氓星球候选人
A terrestrial-mass rogue planet candidate detected in the shortest-timescale microlensing event
论文作者
论文摘要
预计在行星系统形成的早期阶段,一些低质量行星有望从其母体行星系统中弹出。根据行星形成理论,例如核心积聚理论,弹出行星的典型质量应在0.3至1.0 $ m _ {\ oplus} $之间。尽管实际上,这种物体不会发出任何光,但可以通过重力微透镜通过轻弯重力检测到它们。由于陆地质量流氓行星而引起的微卷事件预计将具有极小的角度爱因斯坦半径(<1 UAS)和极短的时间尺度(<0.1天)。在这里,我们介绍了最短的微透明事件的发现,ogle-2016-blg-1928,迄今已确定($ t _ {\ rm e} \大约0.0288 \ \ \ mathrm {day {day {day} = 41.5 \ mathrm {minrm {min} $)。由于在事件的光曲线中检测到有限源效应,我们能够测量镜头$θ_ {\ rm e} = 0.842 \ pm 0.064 $ uas的角度爱因斯坦半径,使该事件成为最极端的短时间频率的Microlens发现。根据其未知距离,镜头可能是火星到地球对象,前者可能受到盖亚源的适当运动测量的可能性。地球可能正在绕星星绕,但我们排除了恒星同伴的存在,直到与星球的预计距离为8.0 au。我们的发现表明,可以使用微透镜检测和表征地面质量自由浮动行星。
Some low-mass planets are expected to be ejected from their parent planetary systems during early stages of planetary system formation. According to planet-formation theories, such as the core accretion theory, typical masses of ejected planets should be between 0.3 and 1.0 $M_{\oplus}$. Although in practice such objects do not emit any light, they may be detected using gravitational microlensing via their light-bending gravity. Microlensing events due to terrestrial-mass rogue planets are expected to have extremely small angular Einstein radii (< 1 uas) and extremely short timescales (< 0.1 day). Here, we present the discovery of the shortest-timescale microlensing event, OGLE-2016-BLG-1928, identified to date ($t_{\rm E} \approx 0.0288\ \mathrm{day} = 41.5 \mathrm{min}$). Thanks to the detection of finite-source effects in the light curve of the event, we were able to measure the angular Einstein radius of the lens $θ_{\rm E} = 0.842 \pm 0.064$ uas, making the event the most extreme short-timescale microlens discovered to date. Depending on its unknown distance, the lens may be a Mars- to Earth-mass object, with the former possibility favored by the Gaia proper motion measurement of the source. The planet may be orbiting a star but we rule out the presence of stellar companions up to the projected distance of 8.0 au from the planet. Our discovery demonstrates that terrestrial-mass free-floating planets can be detected and characterized using microlensing.