论文标题

与自旋轨道耦合的系统中自旋传输,弱反定位和三重超导的统一描述

A Unified Description of Spin Transport, Weak Antilocalization and Triplet Superconductivity in Systems with Spin-Orbit Coupling

论文作者

Ilić, Stefan, Tokatly, Ilya V., Bergeret, F. Sebastián

论文摘要

Eilenberger方程是描述具有任意障碍的超导体的标准工具。它可以推广到具有线性旋转轨道耦合(SOC)的系统,通过用非亚伯背景字段利用SOC的类比。这样的场将单线和三重态组件混合在一起,并产生磁电现象的丰富物理。在这项工作中,我们表明该方程的应用超出了超导性。在正常状态下,线性化的Eilenberger方程描述了耦合的旋转电荷动力学。此外,它的分解对应于所谓的库存龙,可用于计算弱定位校正。具体来说,我们展示了如何解决任何源术语的方程式,并为Rashba Soc的情况提供封闭式解决方案。我们使用该解决方案来解决旋转和超导性的几个问题。首先,我们研究了正常状态下的铁磁电极的自旋注射,并描述了样品中自旋密度的空间演化,以及从扩散到弹道极限的完全交叉。其次,我们解决了所谓的超导Edelstein效应,并将先前已知的结果推广到任意疾病。第三,我们研究了超出扩散极限的弱定位校正,这可能是具有非常强大SOC的材料实验表征的有价值的工具。我们还谈到了所谓的纯仪表外壳,其中持续的旋转螺旋形成。我们的工作将线性化的Eilenberger方程确立为一种功能强大且非常多功能的方法,用于研究具有自旋轨道耦合的材料,与替代方法相比,它通常提供更简单,更直观的图片。

The Eilenberger equation is a standard tool in the description of superconductors with an arbitrary degree of disorder. It can be generalized to systems with linear-in-momentum spin-orbit coupling (SOC), by exploiting the analogy of SOC with a non-abelian background field. Such field mixes singlet and triplet components and yields the rich physics of magnetoelectric phenomena. In this work we show that the application of this equation extends further, beyond superconductivity. In the normal state, the linearized Eilenberger equation describes the coupled spin-charge dynamics. Moreover, its resolvent corresponds to the so called Cooperons, and can be used to calculate the weak localization corrections. Specifically, we show how to solve this equation for any source term and provide a closed-form solution for the case of Rashba SOC. We use this solution to address several problems of interest for spintronics and superconductivity. Firstly, we study spin injection from ferromagnetic electrodes in the normal state, and describe the spatial evolution of spin density in the sample, and the complete crossover from the diffusive to the ballistic limit. Secondly, we address the so-called superconducting Edelstein effect, and generalize the previously known results to arbitrary disorder. Thirdly, we study weak localization correction beyond the diffusive limit, which can be a valuable tool in experimental characterization of materials with very strong SOC. We also address the so-called pure gauge case where the persistent spin helices form. Our work establishes the linearized Eilenberger equation as a powerful and a very versatile method for the study of materials with spin-orbit coupling, which often provides a simpler and more intuitive picture compared to alternative methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源