论文标题
Pairdiagsph:球形系统的确切配对对角线化程序的概括
PairDiagSph: Generalization of the Exact Pairing Diagonalization Program for Spherical Systems
论文作者
论文摘要
我们提出了一个有效的程序,用于基于SU(2)Quasi-Spin代数的旋转不变性的球形系统中配对的哈密顿配对溶液的有效程序。使用迭代算法生成了具有准旋转对称性的基础向量。然后,使用兰开斯算法对对角线构建的汉密尔顿基质。散射操作员和哈希搜索以矢量作用,对哈密顿矩阵的所有非零矩阵元素都“触发”评估。因此,开发的OpenMP并行程序Pairdiagsph可以有效地计算一般球形配对的汉密尔顿人的地面特征值和特征值。可以在标准台式计算机上计算几个小时的尺寸的系统,最高为10 $^{8} $。
We present an efficient program for the exact diagonalization solution of the pairing Hamiltonian in spherical systems with rotational invariance based on the SU(2) quasi-spin algebra. The basis vectors with quasi-spin symmetry considered are generated by using an iterative algorithm. Then the Hamiltonian matrix constructed on this basis is diagonalized with the Lanczos algorithm. All non-zero matrix elements of the Hamiltonian matrix are evaluated "on the fly" by the scattering operator and hash search acting on the basis vectors. The OpenMP parallel program thus developed, PairDiagSph, can efficiently calculate the ground-state eigenvalue and eigenvector of general spherical pairing Hamiltonians. Systems with dimension up to 10$^{8}$ can be calculated in few hours on standard desktop computers.