论文标题
自适应多模式融合通过Hadamard矩阵
Adaptive Multi-modal Fusion Hashing via Hadamard Matrix
论文作者
论文摘要
由于其存储较低和处理速度高,哈希在信息检索中起着重要作用。在文献中可用的技术中,多模式散列可以将异质的多模式特征编码为紧凑的哈希码,引起了特别的关注。大多数现有的多模式哈希方法采用固定的加权因子来融合任何查询数据的多种方式,这些数据无法捕获不同查询的变化。此外,许多方法引入了超参数,以平衡许多正规化术语,从而使优化更加困难。同时,设置适当的参数值是耗时且劳动密集型的。这些限制可能会极大地阻碍其在实际应用中的晋升。在本文中,我们提出了一种受Hadamard矩阵启发的简单而有效的方法。所提出的方法以自适应方式捕获了多模式特征信息,并保留了哈希代码中的歧视性语义信息。我们的框架是灵活的,涉及极少数的超参数。广泛的实验结果表明,与最先进的算法相比,该方法有效,并且取得了卓越的性能。
Hashing plays an important role in information retrieval, due to its low storage and high speed of processing. Among the techniques available in the literature, multi-modal hashing, which can encode heterogeneous multi-modal features into compact hash codes, has received particular attention. Most of the existing multi-modal hashing methods adopt the fixed weighting factors to fuse multiple modalities for any query data, which cannot capture the variation of different queries. Besides, many methods introduce hyper-parameters to balance many regularization terms that make the optimization harder. Meanwhile, it is time-consuming and labor-intensive to set proper parameter values. The limitations may significantly hinder their promotion in real applications. In this paper, we propose a simple, yet effective method that is inspired by the Hadamard matrix. The proposed method captures the multi-modal feature information in an adaptive manner and preserves the discriminative semantic information in the hash codes. Our framework is flexible and involves a very few hyper-parameters. Extensive experimental results show the method is effective and achieves superior performance compared to state-of-the-art algorithms.