论文标题

新颖的黑弹空时:虫洞,规律性,能量状况和因果结构

Novel black-bounce spacetimes: wormholes, regularity, energy conditions, and causal structure

论文作者

Lobo, Francisco S. N., Rodrigues, Manuel E., Silva, Marcos V. de S., Simpson, Alex, Visser, Matt

论文摘要

我们开发了许多新颖的“黑手”空间。这些是特定的常规黑洞,其中“区域半径”始终保持非零,从而导致“喉咙”是及时的(对应于可穿越的虫洞),spacelike(对应于未来的宇宙中的“弹跳”)或null(对应于“单向蠕虫”)。我们将首先对这种时空的规律性条件进行一般分析,然后考虑许多具体示例。这些示例是使用类似于风扇的质量函数来构建的,并属于几种特定情况,例如原始的Simpson- visser模型,Bardeen型模型及其其他概括。我们将分析这些模型的规律性,能量条件和因果结构。主要结果是几个新几何形状,比以前更复杂,具有两个或多个视野,并且可能是极端情况。我们将获得有关静态时空规律性的一般定理,以及有关经典能量条件的(非)满足的另一个通用定理。

We develop a number of novel "black-bounce" spacetimes. These are specific regular black holes where the "area radius" always remains non-zero, thereby leading to a "throat" that is either timelike (corresponding to a traversable wormhole), spacelike (corresponding to a "bounce" into a future universe), or null (corresponding to a "one-way wormhole"). We shall first perform a general analysis of the regularity conditions for such a spacetime, and then consider a number of specific examples. The examples are constructed using a mass function similar to that of Fan--Wang, and fall into several particular cases, such as the original Simpson--Visser model, a Bardeen-type model, and other generalizations thereof. We shall analyse the regularity, the energy conditions, and the causal structure of these models. The main results are several new geometries, more complex than before, with two or more horizons, with the possibility of an extremal case. We shall derive a general theorem regarding static space-time regularity, and another general theorem regarding (non)-satisfaction of the classical energy conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源