论文标题
Grunsky系数的某些应用在单价函数理论中
Some application of Grunsky coefficients in the theory of univalent functions
论文作者
论文摘要
在单位磁盘$ {\ mathbb d} = \ {z:| z | <1 \} $和$ f(z)= z+sum_ {n = 2}^{\ infty} a_n z^n $中,让函数$ f $在单位磁盘$ {\ mathbb d} = \ {z | | <1使用基于Grusky系数的方法,我们研究了该类别的单价功能的几个问题:第三个对数系数的广义Zalcman猜想的特殊情况的上限$ | A_2A_3-A_4 | $,以及对Goolegarithmic系数的第二个汉克尔决心。
Let function $f$ be normalized, analytic and univalent in the unit disk ${\mathbb D}=\{z:|z|<1\}$ and $f(z)=z+\sum_{n=2}^{\infty} a_n z^n$. Using a method based on Grusky coefficients we study several problems over that class of univalent functions: upper bounds of the special case of the generalised Zalcman conjecture $|a_2a_3-a_4|$, of the third logarithmic coefficient, and of the second Hankel determinant for the logarithmic coefficients.