论文标题
扩散的蒙特卡洛计算(多夸克)结合状态
Diffusion Monte Carlo calculations of fully-heavy (multiquark) bound states
论文作者
论文摘要
我们使用扩散的蒙特卡洛法来求解描述完全重型的四夸克系统的多体schrödinger方程。这种方法允许在百分比级别上减少数值计算的不确定性,解释物理观察物中的多粒子相关性,并避免在其他用于同一问题的理论技术中假定的通常的夸克群集。粒子之间的相互作用是由最一般和最接受的电位建模的,即包括库仑,线性固定和超精细自旋旋转项在内的成对相互作用。这意味着,原则上,我们的分析应提供一些严格的陈述,内容涉及全面的四夸克接地状态的批量位置,这尤其及时,这是由于LHCB合作对$ j/ψ$ - 不变质谱中一些增强功能的最新观察结果。我们的主要结果是:(i)$ cc \ bar c \ bar c $,$ cc \ bar b \ bar b $($ bb \ bar \ bar c \ bar c $)和$ bb \ bb \ bar b \ bar b $最低状态远高于其相应的中等中等含值中心thresholds; (ii)$ j^{pc} = 0^{++} $ cc \ bar c \ bar c \ bar c $带有首选Quark-Antiquark对配置配置与LHCB协作观察到的增强(S); (iii)我们对$ cc \ bar c \ bar b $和$ bb \ bb \ bb c \ bar b $部门的结果似乎表明,$ 0^+$和$ 1^+$基础状态几乎是贬低的,$ 2^+$,位于$ 100 \,\ text {mev {mev} $上方的$ 2^+$上方; (iv)预测$ cb \ bar b $系统的较小的质量分组,与其他理论著作合理一致,绝对质量值; (v)$ 1^{++} $ $ $ cb \ bar c \ b $ tetraquark地面状态位于其最低$ s $ - 波 - 波梅森 - 梅森 - 梅森 - 梅森阈值,并且与分子构型兼容。
We use a diffusion Monte Carlo method to solve the many-body Schrödinger equation describing fully-heavy tetraquark systems. This approach allows to reduce the uncertainty of the numerical calculation at the percent level, accounts for multi-particle correlations in the physical observables, and avoids the usual quark-clustering assumed in other theoretical techniques applied to the same problem. The interaction between particles was modeled by the most general and accepted potential, i.e. a pairwise interaction including Coulomb, linear-confining and hyperfine spin-spin terms. This means that, in principle, our analysis should provide some rigorous statements about the mass location of the all-heavy tetraquark ground states, which is particularly timely due to the very recent observation made by the LHCb collaboration of some enhancements in the invariant mass spectra of $J/ψ$-pairs. Our main results are: (i) the $cc\bar c\bar c$, $cc\bar b\bar b$ ($bb\bar c\bar c$) and $bb\bar b \bar b$ lowest-lying states are located well above their corresponding meson-meson thresholds; (ii) the $J^{PC}=0^{++}$ $cc\bar c\bar c$ ground state with preferred quark-antiquark pair configurations is compatible with the enhancement(s) observed by the LHCb collaboration; (iii) our results for the $cc\bar c\bar b$ and $bb\bar c\bar b$ sectors seem to indicate that the $0^+$ and $1^+$ ground states are almost degenerate with the $2^+$ located around $100\,\text{MeV}$ above them; (iv) smaller mass splittings for the $cb\bar c\bar b$ system are predicted, with absolute mass values in reasonable agreement with other theoretical works; (v) the $1^{++}$ $cb\bar c\bar b$ tetraquark ground state lies at its lowest $S$-wave meson-meson threshold and it is compatible with a molecular configuration.