论文标题
在海森堡模型中淬火后的动荡放松
Turbulent relaxation after a quench in the Heisenberg model
论文作者
论文摘要
我们预测了二维Heisenberg模型的淬火动力学中湍流缩放的出现,以实现广泛的初始条件和模型参数。在各向同性的海森堡模型中,我们发现自旋旋转相关函数表现出与湍流能量级联一致的通用缩放。当自旋旋转对称性通过易于平面交换各向异性打破时,我们发现了双重级联的能量和与横向磁化波动相关的紧急保守电荷。缩放指数通过分析估算,并使用相位空间方法与数值模拟一致。我们还定义了导致湍流级联的初始条件(作为能量,磁化和自旋数$ S $)的空间。对微观细节或初始条件不敏感的级联的普遍特征表明,在冷原子和固态实验中,自旋系统中的湍流可以广泛实现。
We predict the emergence of turbulent scaling in the quench dynamics of the two-dimensional Heisenberg model for a wide range of initial conditions and model parameters. In the isotropic Heisenberg model, we find that the spin-spin correlation function exhibits universal scaling consistent with a turbulent energy cascade. When the spin rotational symmetry is broken by an easy-plane exchange anisotropy, we find a dual cascade of energy and an emergent conserved charge associated to transverse magnetization fluctuations. The scaling exponents are estimated analytically and agree with numerical simulations using phase space methods. We also define the space of initial conditions (as a function of energy, magnetization, and spin number $S$) that lead to a turbulent cascade. The universal character of the cascade, insensitive to microscopic details or initial conditions, suggests that turbulence in spin systems can be broadly realized in cold atom and solid-state experiments.