论文标题

几乎所有积极的连续线性函数都可以扩展

Almost all positive continuous linear functionals can be extended

论文作者

de Bruyn, Josse van Dobben

论文摘要

令$ f $为一个有序的拓扑矢量空间(超过$ \ m马布{r} $),其正锥$ f _+$是弱关闭的,让$ e \ e \ subseteq f $为子空间。我们证明,$ e $上的一组正连续线性功能集可以扩展(积极,连续)到$ f $很弱 - $*$ $*$密度在拓扑双wedge $ e _+'$中。此外,我们表明,即使在有限维空间中,也无法将此结果推广到任意正算子。

Let $F$ be an ordered topological vector space (over $\mathbb{R}$) whose positive cone $F_+$ is weakly closed, and let $E \subseteq F$ be a subspace. We prove that the set of positive continuous linear functionals on $E$ that can be extended (positively and continuously) to $F$ is weak-$*$ dense in the topological dual wedge $E_+'$. Furthermore, we show that this result cannot be generalized to arbitrary positive operators, even in finite-dimensional spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源