论文标题

APRIORI和APOSTORII误差估计,用于完全耦合Navier-Stokes运输模型的子网格多尺度稳定有限元方法

Apriori and aposteriori error estimation of Subgrid multiscale stabilized finite element method for fully coupled Navier-Stokes Transport model

论文作者

Kumar, B. V. Rathish, Chowdhury, Manisha

论文摘要

在本文中,已经通过子网格多构稳定稳定的有限元方法研究了一个瞬态$ navier $ - $ stokes $($ ns $)流体流量模型($ ns $)流体流量模型($ vadr $)的可变系数非稳定的Advection-Advection-Reaction($ vadr $)的完全耦合系统。特别是近似近似量表的代数方法已被认为是耦合系统的稳定变异公式。由于流体的粘度取决于浓度,该系统是强烈耦​​合的,该浓度是由$ vadr $方程建模的。已考虑完全隐含的方案以进行时间离散。进一步详细介绍了$ apriori $和$ aposteriori $ $ aposteriori $稳定有限元方案的错误估计。稳定方法的可信度也通过在结论之前提出的各种数值实验确定。

In this paper a fully coupled system of transient $Navier$-$Stokes$ ($NS$) fluid flow model and variable coefficient unsteady Advection-Diffusion-Reaction ($VADR$) transport model has been studied through subgrid multiscale stabilized finite element method. In particular algebraic approach of approximating the subscales has been considered to arrive at stabilized variational formulation of the coupled system. This system is strongly coupled since viscosity of the fluid depends upon the concentration, whose transportation is modelled by $VADR$ equation. Fully implicit schemes have been considered for time discretisation. Further more elaborated derivations of both $apriori$ and $aposteriori$ error estimates for stabilized finite element scheme have been carried out. Credibility of the stabilized method is also established well through various numerical experiments, presented before concluding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源