论文标题
部分波分析中相位旋转歧义的数学方面
Mathematical aspects of phase rotation ambiguities in partial wave analyses
论文作者
论文摘要
一旦将振幅乘以整体能量和角度依赖性相位,单渠道中的可观察到$ 2 $ - 体散射问题仍然不变。这种不变性被称为连续歧义。同样,在截短的部分波分析(TPWA)中,已知源自根的复杂结合的离散歧义。在本说明中,结果表明,一般的连续性歧义混合了部分波,对于标量粒子,离散的歧义只是具有特定相的连续性歧义的一部分。简要概述了一种数值方法,可以确定相关的连接阶段。
The observables in a single-channel $2$-body scattering problem remain invariant once the amplitude is multiplied by an overall energy- and angle-dependent phase. This invariance is known as the continuum ambiguity. Also, mostly in truncated partial wave analyses (TPWAs), discrete ambiguities originating from complex conjugation of roots are known to occur. In this note, it is shown that the general continuum ambiguity mixes partial waves and that for scalar particles, discrete ambiguities are just a subset of continuum ambiguities with a specific phase. A numerical method is outlined briefly, which can determine the relevant connecting phases.