论文标题
在Andrews和Newman的MEX相关分区功能上
On Mex-related partition functions of Andrews and Newman
论文作者
论文摘要
在正整数的$ s $上,最小的排除物或“ MEX”功能是最小的正整数,而不是$ s $。在最近的一篇论文中,安德鲁斯(Andrews)和纽曼(Newman)将MEX功能扩展到整数分区,并发现了许多与这些功能相关的令人惊讶的分区身份。最近,达·席尔瓦(Da Silva)和卖家提出了对安德鲁斯(Andrews)和纽曼(Newman)研究的一个家庭的均等考虑,即$ p_ {t,t,t}(n)$,并提供$ p_ {1,1}(n)$和$ p_ {3,3,3,3}(n)$的完全均等特征。在本文中,我们研究了$ p_ {t,t}(n)$的均等时,当$ t = 2^α,3 \ cdot 2^α$ for All $α\ geq 1 $。我们证明,$ p_ {2^α,2^α}(n)$和$ p_ {3 \ cdot2^α,3 \ cdot2^α}(n)$几乎总是对于所有$α\ geq 1 $而言总是甚至总是甚至总是。使用Ono和Taguchi对Hecke操作员的努力的结果,我们还发现了无限的一致家族模量$ 2 $ $ P_ {2^α,2^α,2^α}(n)$和$ p_ {3 \ cdot2^α,3 \ cdot2^α}(3 \ cdot2^α}(N)
The minimal excludant, or "mex" function, on a set $S$ of positive integers is the least positive integer not in $S$. In a recent paper, Andrews and Newman extended the mex-function to integer partitions and found numerous surprising partition identities connected with these functions. Very recently, da Silva and Sellers present parity considerations of one of the families of functions Andrews and Newman studied, namely $p_{t,t}(n)$, and provide complete parity characterizations of $p_{1,1}(n)$ and $p_{3,3}(n)$. In this article, we study the parity of $p_{t,t}(n)$ when $t=2^α, 3\cdot 2^α$ for all $α\geq 1$. We prove that $p_{2^α,2^α}(n)$ and $p_{3\cdot2^α, 3\cdot2^α}(n)$ are almost always even for all $α\geq 1$. Using a result of Ono and Taguchi on nilpotency of Hecke operators, we also find infinite families of congruences modulo $2$ satisfied by $p_{2^α,2^α}(n)$ and $p_{3\cdot2^α, 3\cdot2^α}(n)$ for all $α\geq 1$.