论文标题

通过机器学习和表面研究确定的IRO2表面肤色

IrO2 Surface Complexions Identified Through Machine Learning and Surface Investigations

论文作者

Timmermann, Jakob, Kraushofer, Florian, Resch, Nikolaus, Li, Peigang, Wang, Yu, Mao, Zhiqiang, Riva, Michele, Lee, Yonghyuk, Staacke, Carsten, Schmid, Michael, Scheurer, Christoph, Parkinson, Gareth S., Diebold, Ulrike, Reuter, Karsten

论文摘要

使用密度功能理论数据对高斯近似电势(GAP)进行训练,以通过模拟退火来实现低索引Rutile IRO2方面的全球几何形状优化。从头开始,热力学识别(101)和(111)(1x1) - 在还原环境中竞争(110)。对单晶的实验发现(101)方面占主导地位,并表现出理论上预测的(1x1)周期性和X射线光电光谱(XPS)核心水平移动。所获得的结构类似于陶瓷电池材料中讨论的肤色。

A Gaussian Approximation Potential (GAP) was trained using density-functional theory data to enable a global geometry optimization of low-index rutile IrO2 facets through simulated annealing. Ab initio thermodynamics identifies (101) and (111) (1x1)-terminations competitive with (110) in reducing environments. Experiments on single crystals find that (101) facets dominate, and exhibit the theoretically predicted (1x1) periodicity and X-ray photoelectron spectroscopy (XPS) core level shifts. The obtained structures are analogous to the complexions discussed in the context of ceramic battery materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源