论文标题

模棱两可的皮卡德组和劳伦特多项式

Equivariant Picard groups and Laurent polynomials

论文作者

Sadhu, Vivek

论文摘要

令$ g $为有限的组。对于$ g $ -ring $ a,$ let $ {\ rm pic}^{\ it g}({\ it a})$表示$ A的equivariant picard组。有收缩$ h_ {et}^{1}(g; spec(a),\ mathbb {z})。$这给出了组$ {\ rm pic}^{\ it g}的自然分解

Let $G$ be a finite group. For a $G$-ring $A,$ let ${\rm Pic}^{\it G}({\it A})$ denote the equivariant Picard group of $A.$ We show that if $A$ is a finite type algebra over a field $k$ then ${\rm Pic}^{\it G}({\it A})$ is contracted in the sense of Bass with contraction $H_{et}^{1}(G; Spec(A), \mathbb{Z}).$ This gives a natural decomposition of the group ${\rm Pic}^{\it G}({\it A[t, t^{-1}]}).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源