论文标题

量子错误校正代码的易于故障操作

Fault-Tolerant Operation of a Quantum Error-Correction Code

论文作者

Egan, Laird, Debroy, Dripto M., Noel, Crystal, Risinger, Andrew, Zhu, Daiwei, Biswas, Debopriyo, Newman, Michael, Li, Muyuan, Brown, Kenneth R., Cetina, Marko, Monroe, Christopher

论文摘要

量子误差校正通过将其编码为较大的量子系统来保护脆弱的量子信息。这些额外的自由度可以实现错误的检测和校正,但也增加了编码逻辑量子的操作复杂性。耐故障电路在操作逻辑量子时包含错误的传播,对于实践中的错误抑制至关重要。虽然易耐故障设计原则上起作用,但以前尚未在具有本机噪声特征的错误校正物理系统中证明它。在这项工作中,我们在实验上证明了使用13个捕获的离子量子箱对培根 - 逻辑量子量子进行耐断层的制备,测量,旋转和稳定剂测量。当我们将这些容忍故障的方案与非故障耐受的协议进行比较时,我们会看到在存在噪声的情况下逻辑原语的错误率显着降低。容忍故障设计的结果是校正后的平均状态准备和测量误差为0.6%,克利福德门误差为0.3%。此外,我们准备具有超过蒸馏阈值的忠诚度的魔术状态,证明了通用耐断层操作所需的所有关键单Qubition成分。这些结果表明,耐断层电路可以在当前量子系统中高度准确的逻辑原始素。通过改进的两个Qubit大门并使用中间测量,可以实现稳定的逻辑量子。

Quantum error correction protects fragile quantum information by encoding it into a larger quantum system. These extra degrees of freedom enable the detection and correction of errors, but also increase the operational complexity of the encoded logical qubit. Fault-tolerant circuits contain the spread of errors while operating the logical qubit, and are essential for realizing error suppression in practice. While fault-tolerant design works in principle, it has not previously been demonstrated in an error-corrected physical system with native noise characteristics. In this work, we experimentally demonstrate fault-tolerant preparation, measurement, rotation, and stabilizer measurement of a Bacon-Shor logical qubit using 13 trapped ion qubits. When we compare these fault-tolerant protocols to non-fault tolerant protocols, we see significant reductions in the error rates of the logical primitives in the presence of noise. The result of fault-tolerant design is an average state preparation and measurement error of 0.6% and a Clifford gate error of 0.3% after error correction. Additionally, we prepare magic states with fidelities exceeding the distillation threshold, demonstrating all of the key single-qubit ingredients required for universal fault-tolerant operation. These results demonstrate that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems. With improved two-qubit gates and the use of intermediate measurements, a stabilized logical qubit can be achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源