论文标题

平均野外自旋眼镜中的算法阈值

Algorithmic Thresholds in Mean Field Spin Glasses

论文作者

Alaoui, Ahmed El, Montanari, Andrea

论文摘要

一般而言,优化高维的非凸功能在计算上是硬的,而且这种类型的许多问题也很难解决。复杂性理论表征了最坏情况下多项式时间可实现的最佳近似比。另一方面,当目标函数是随机的时,最坏情况的近似值比过度悲观。平均场自旋眼镜是离散超立方体$ \ { - 1,+1 \}^n $的随机能量功能的规范家族。这些能量景观的近乎景观是根据超级树状结构组织的,该结构具有高度的普遍性。最近,在典型情况下,在多项式时间内可以实现的最佳近似比之间已经出现了精确的联系。已经提出了一种新的近似消息传递(AMP)算法,以利用此连接。该算法的渐近行为已经进行了分析,其条件是基于某个变异问题解决方案的性质。 在本文中,我们描述了该算法的第一个实现和相关变分问题的第一个数值解决方案。我们测试了两个典型的平均场旋转玻璃上的方法:Sherrington-Kirkpatrick(SK)型号和$ 3 $ -Spin Ising Spin Glass。我们观察到,该算法的运作良好已经达到中等大小($ n \ gtrsim 1000 $),并且其行为与理论期望一致。对于SK模型,它渐近地实现了全局最佳的任意良好近似值。对于$ 3 $ - SPIN模型,它实现了该理论预测的恒定近似比,并且似乎超过了Glauber动力学实现的“阈值能量”。最后,我们从数值上观察到,该算法生成的中间状态具有超级树中祖先状态的特性。

Optimizing a high-dimensional non-convex function is, in general, computationally hard and many problems of this type are hard to solve even approximately. Complexity theory characterizes the optimal approximation ratios achievable in polynomial time in the worst case. On the other hand, when the objective function is random, worst case approximation ratios are overly pessimistic. Mean field spin glasses are canonical families of random energy functions over the discrete hypercube $\{-1,+1\}^N$. The near-optima of these energy landscapes are organized according to an ultrametric tree-like structure, which enjoys a high degree of universality. Recently, a precise connection has begun to emerge between this ultrametric structure and the optimal approximation ratio achievable in polynomial time in the typical case. A new approximate message passing (AMP) algorithm has been proposed that leverages this connection. The asymptotic behavior of this algorithm has been analyzed, conditional on the nature of the solution of a certain variational problem. In this paper we describe the first implementation of this algorithm and the first numerical solution of the associated variational problem. We test our approach on two prototypical mean-field spin glasses: the Sherrington-Kirkpatrick (SK) model, and the $3$-spin Ising spin glass. We observe that the algorithm works well already at moderate sizes ($N\gtrsim 1000$) and its behavior is consistent with theoretical expectations. For the SK model it asymptotically achieves arbitrarily good approximations of the global optimum. For the $3$-spin model, it achieves a constant approximation ratio that is predicted by the theory, and it appears to beat the `threshold energy' achieved by Glauber dynamics. Finally, we observe numerically that the intermediate states generated by the algorithm have the properties of ancestor states in the ultrametric tree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源