论文标题

在知识图中结构意识到的负面抽样

Structure Aware Negative Sampling in Knowledge Graphs

论文作者

Ahrabian, Kian, Feizi, Aarash, Salehi, Yasmin, Hamilton, William L., Bose, Avishek Joey

论文摘要

使用对比度估计为实体学习实体和关系的低维表示代表了推断连通性模式的可扩展有效方法。对比学习方法的一个关键方面是选择产生硬性样本的腐败分布的选择,这迫使嵌入模型学习歧视性表示并找到观察到的数据的关键特征。虽然早期的方法要么采用过于简单的腐败分布,即统一,产生易于的非信息负面底片或具有挑战性优化方案的复杂对抗分布,但它们并未明确纳入已知的图形结构,从而导致次优底片。在本文中,我们提出了结构感知的负面采样(SANS),这是一种廉价的负抽样策略,通过从节点的K-Hop邻居中选择负样本来利用丰富的图形结构。从经验上讲,我们证明了SANS发现语义上有意义的负面因素,并且与SOTA方法具有竞争力,而不需要其他参数也不需要困难的对抗性优化。

Learning low-dimensional representations for entities and relations in knowledge graphs using contrastive estimation represents a scalable and effective method for inferring connectivity patterns. A crucial aspect of contrastive learning approaches is the choice of corruption distribution that generates hard negative samples, which force the embedding model to learn discriminative representations and find critical characteristics of observed data. While earlier methods either employ too simple corruption distributions, i.e. uniform, yielding easy uninformative negatives or sophisticated adversarial distributions with challenging optimization schemes, they do not explicitly incorporate known graph structure resulting in suboptimal negatives. In this paper, we propose Structure Aware Negative Sampling (SANS), an inexpensive negative sampling strategy that utilizes the rich graph structure by selecting negative samples from a node's k-hop neighborhood. Empirically, we demonstrate that SANS finds semantically meaningful negatives and is competitive with SOTA approaches while requires no additional parameters nor difficult adversarial optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源