论文标题

无限差异概率理论中资源量化的框架

Framework for resource quantification in infinite-dimensional general probabilistic theories

论文作者

Lami, Ludovico, Regula, Bartosz, Takagi, Ryuji, Ferrari, Giovanni

论文摘要

资源理论为量子力学及其他地区中物理系统属性的特性表征提供了一个一般框架。在这里,我们介绍了量化一般概率理论(GPT)中资源的方法,特别关注与无限维状态空间相关的技术问题。我们根据鲁棒性度量来定义通用资源量化符,并表明它可以接收直接的操作含义:在任何GPT中,它量化了给定资源状态在渠道歧视任务中均超过所有无资源的状态的优势。我们表明,鲁棒性在凸和封闭的自由状态集所描述的任何资源理论中都充当忠实且强烈的单调度量,并且可以通过凸锥优化问题进行计算。 专门针对连续变化的量子力学,我们获得了其他界限和关系,从而有效地计算了该度量和与其他单调的比较。我们证明了鲁棒性在几种物理相关性资源中的应用:光学非古典性,纠缠,真正的非高斯性和连贯性。特别是,我们为各种状态建立了精确的表达式,包括Fock状态和挤压状态在非古典性和一般纯状态的资源理论中,以及在纠缠的资源理论中,以及在一般情况下适用的紧密界限。

Resource theories provide a general framework for the characterization of properties of physical systems in quantum mechanics and beyond. Here, we introduce methods for the quantification of resources in general probabilistic theories (GPTs), focusing in particular on the technical issues associated with infinite-dimensional state spaces. We define a universal resource quantifier based on the robustness measure, and show it to admit a direct operational meaning: in any GPT, it quantifies the advantage that a given resource state enables in channel discrimination tasks over all resourceless states. We show that the robustness acts as a faithful and strongly monotonic measure in any resource theory described by a convex and closed set of free states, and can be computed through a convex conic optimization problem. Specializing to continuous-variable quantum mechanics, we obtain additional bounds and relations, allowing an efficient computation of the measure and comparison with other monotones. We demonstrate applications of the robustness to several resources of physical relevance: optical nonclassicality, entanglement, genuine non-Gaussianity, and coherence. In particular, we establish exact expressions for various classes of states, including Fock states and squeezed states in the resource theory of nonclassicality and general pure states in the resource theory of entanglement, as well as tight bounds applicable in general cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源