论文标题

在未指向的组标记图中的包装周期

Packing cycles in undirected group-labelled graphs

论文作者

Thomas, Robin, Yoo, Youngho

论文摘要

我们证明了罗伯逊(Robertson)和西摩(Seymour)的平壁定理的改进,以$γ$分配给无向图的每个边缘$ g $ g $ g $ g $的每个元素的每个元素$γ$。 As a consequence, we prove that $Γ$-nonzero cycles (cycles whose edges sum to a non-identity element of $Γ$) satisfy the half-integral Erdős-Pósa property, and we also recover a result of Wollan that, if $Γ$ has no element of order two, then $Γ$-nonzero cycles satisfy the Erdős-Pósa property.作为另一个应用程序,我们证明,如果$ m $是一种奇怪的素数,则长度$ \ ell \ mod m $的周期满足所有整数$ \ ell $的Erdős-pósa属性。这部分回答了1987年Dejter和Neumann-Lara的问题,以描述所有这些整数对$(\ ell,m)$。

We prove a refinement of the flat wall theorem of Robertson and Seymour to undirected group-labelled graphs $(G,γ)$ where $γ$ assigns to each edge of an undirected graph $G$ an element of an abelian group $Γ$. As a consequence, we prove that $Γ$-nonzero cycles (cycles whose edges sum to a non-identity element of $Γ$) satisfy the half-integral Erdős-Pósa property, and we also recover a result of Wollan that, if $Γ$ has no element of order two, then $Γ$-nonzero cycles satisfy the Erdős-Pósa property. As another application, we prove that if $m$ is an odd prime power, then cycles of length $\ell \mod m$ satisfy the Erdős-Pósa property for all integers $\ell$. This partially answers a question of Dejter and Neumann-Lara from 1987 on characterizing all such integer pairs $(\ell,m)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源