论文标题
有效平面分形中的限制电子
Confined Electrons in Effective Plane Fractals
论文作者
论文摘要
作为一种新兴的复合二维结构,由于其新型尺寸相关的物理特性,平面分形引起了很多关注。在本文中,我们通过将外部电场应用于正方形或蜂窝晶格,来检查有效的Sierpinski地毯(SC)的可行性,这是一个有效的Sierpinski地毯(SC)。电场形成分形几何形状,但下面晶格的原子结构保持不变。通过计算和比较各种电子特性,我们发现电子的一部分可以在具有相对较小的场的分数维度中有效地限制在实际分形中,并表示非常接近这些属性。特别是,与方形晶格相比,在六角形晶格中有效限制电子所需的外场,这表明像石墨烯一样的系统将是实验构建有效SC的理想平台。我们的工作铺平了一种新的方式来从自上而下的角度构建分形,并可以激励对实际系统中的分数维度进行更多的研究。
As an emerging complex two-dimensional structure, plane fractal has attracted much attention due to its novel dimension-related physical properties. In this paper, we check the feasibility to create an effective Sierpinski carpet (SC), a plane fractal with Hausdorff dimension intermediate between one and two, by applying an external electric field to a square or a honeycomb lattice. The electric field forms a fractal geometry but the atomic structure of the underlying lattice remains the same. By calculating and comparing various electronic properties, we find parts of the electrons can be confined effectively in a fractional dimension with a relatively small field, and representing properties very close to these in a real fractal. In particular, compared to the square lattice, the external field required to effectively confine the electron is smaller in the hexagonal lattice, suggesting that a graphene-like system will be an ideal platform to construct an effective SC experimentally. Our work paves a new way to build fractals from a top-down perspective, and can motivate more studies of fractional dimensions in real systems.