论文标题
$ p $ - adic的持续分数算法
Ergodicity for $p$-adic continued fraction algorithms
论文作者
论文摘要
在Schweiger对多维持续分数算法的概括之后,我们考虑了一个非常大的$ p $ p $ - adiC多维持续分数算法的家庭,其中包括Schneider的算法,Ruban的算法,以及$ P $ $ p $ - jacobi-Perron algorron Algorithm(特殊情况)。主要的结果是表明家族中的所有转变均相对于HAAR度量。
Following Schweiger's generalization of multidimensional continued fraction algorithms, we consider a very large family of $p$-adic multidimensional continued fraction algorithms, which include Schneider's algorithm, Ruban's algorithms, and the $p$-adic Jacobi-Perron algorithm as special cases. The main result is to show that all the transformations in the family are ergodic with respect to the Haar measure.