论文标题

学习非唯一细分,并通过奖励骰子丢失损失

Learning Non-Unique Segmentation with Reward-Penalty Dice Loss

论文作者

He, Jiabo, Erfani, Sarah, Wijewickrema, Sudanthi, O'Leary, Stephen, Ramamohanarao, Kotagiri

论文摘要

语义分割是计算机视觉领域的关键问题之一,因为它可以使计算机图像理解。但是,语义细分的大多数研究和应用都集中在解决独特的分割问题上,在每个输入图像中只有一个金标准分割结果。在某些问题(例如医疗应用程序)中,这可能不是正确的。我们可能会有非唯一的分割注释,因为不同的外科医生可能会以略有不同的方式为同一患者进行成功的手术。为了全面学习非唯一的分割任务,我们提出奖励 - 重生骰子损失(RPDL)功能作为深卷积神经网络(DCNN)的优化目标。 RPDL能够通过增强共同区域并惩罚外部区域来帮助DCNN学习非唯一的细分。实验结果表明,与我们收集的手术数据集中的其他损失功能相比,RPDL将DCNN模型的性能提高了多达18.4%。

Semantic segmentation is one of the key problems in the field of computer vision, as it enables computer image understanding. However, most research and applications of semantic segmentation focus on addressing unique segmentation problems, where there is only one gold standard segmentation result for every input image. This may not be true in some problems, e.g., medical applications. We may have non-unique segmentation annotations as different surgeons may perform successful surgeries for the same patient in slightly different ways. To comprehensively learn non-unique segmentation tasks, we propose the reward-penalty Dice loss (RPDL) function as the optimization objective for deep convolutional neural networks (DCNN). RPDL is capable of helping DCNN learn non-unique segmentation by enhancing common regions and penalizing outside ones. Experimental results show that RPDL improves the performance of DCNN models by up to 18.4% compared with other loss functions on our collected surgical dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源