论文标题
在边界条件矩阵上的对角线代表上
On diagonal representatives in boundary condition matrices on orbifolds
论文作者
论文摘要
我们研究Orbifolds $ s^1/z_2 $和$ t^2/z_m $($ M = 2、3、4、6 $)的边界条件矩阵的对角线代表。我们使用矩阵指数表示,在$ s^1/z_2 $上的每种等效边界条件矩阵中存在对角线代表的替代证明,并表明它们不一定存在于$ t^2/z_2 $,$ t^2 $,$ t^2/z_3 $和$ t^2/z_3 $和$ t^2/z___4 $。 $ t^2/z_6 $上的每个等价类都有对角线代表,因为其边界条件由单个统一矩阵确定。
We study diagonal representatives of boundary condition matrices on the orbifolds $S^1/Z_2$ and $T^2/Z_m$ ($m=2, 3, 4, 6$). We give an alternative proof of the existence of diagonal representatives in each equivalent class of boundary condition matrices on $S^1/Z_2$, using a matrix exponential representation, and show that they do not necessarily exist on $T^2/Z_2$, $T^2/Z_3$, and $T^2/Z_4$. Each equivalence class on $T^2/Z_6$ has a diagonal representative, because its boundary conditions are determined by a single unitary matrix.