论文标题

普通黑洞和其他带有电荷DE保姆芯和表面物质层的紧凑物体的稳定性

Stability of regular black holes and other compact objects with a charged de Sitter core and a surface matter layer

论文作者

Masa, Angel D. D., de Oliveira, Enesson S., Zanchin, Vilson T.

论文摘要

在本工作中研究了一类常规黑洞,准布孔和其他带电的紧凑物体的稳定性和其他物理特性。紧凑的物体是通过求解在静态空间中实现球形对称性的Einstein-Maxwell方程系统获得的。空间在两个区域被坐标半径$ a $的球形表面分开。内部区域包含具有状态的de Sitter类型方程的非异向充电流体,$ p_r =-ρ_m$,$ p_r $和$ρ_m$分别是径向压力和流体的能量密度。电荷分布被选为行为良好的幂律功能。外部区域是电动区雷森·诺德斯特斯特(Nordström)公制,该公制是通过将带有半径$ a $的球形薄壳(薄物层)连接到内部度量标准的。壳的物质被认为是满足状态的线性正压方程的完美液体,$ {\ cal p} =ωσ$,$ {\ cal p} $和$σ$分别是外壳的压力和能量密度,$ω$是恒定的。通过探索参数空间的有趣区域,补充了对类似模型的先前作品的分析,可以详细分析获得的确切解决方案。这是本研究的第一个重要贡献。然后研究溶液的稳定性考虑了壳的平衡位置周围的扰动。这是这项工作的第二个也是最重要的贡献。我们发现,参数空间的相对较大的区域中存在稳定的对象。特别是,对于参数$ω$的所有值的所有值都有稳定的常规黑洞。在参数空间的某些区域中,允许其他稳定的超级反理物体作为准孔孔,压力杆,甚至是过度充电的恒星。

The stability and other physical properties of a class of regular black holes, quasiblack holes, and other electrically charged compact objects are investigated in the present work. The compact objects are obtained by solving the Einstein-Maxwell system of equations assuming spherical symmetry in a static spacetime. The spacetime is split in two regions by a spherical surface of coordinate radius $a$. The interior region contains a nonisotropic charged fluid with a de Sitter type equation of state, $p_r = -ρ_m$, $p_r$ and $ρ_m$ being respectively the radial pressure and the energy density of the fluid. The charge distribution is chosen as a well behaved power-law function. The exterior region is the electrovacuum Reissner-Nordström metric, which is joined to the interior metric through a spherical thin shell (a thin matter layer) placed at the radius $a$. The matter of the shell is assumed to be a perfect fluid satisfying a linear barotropic equation of state, ${\cal P}=ωσ$, with ${\cal P}$ and $σ$ being respectively the pressure and energy density of the shell, with $ω$ being a constant. The exact solutions obtained are analyzed in some detail by exploring the interesting regions of parameter space, complementing the analysis of previous works on similar models. This is the first important contribution of the present study. The stability of the solutions are then investigated considering perturbations around the equilibrium position of the shell. This is the second and the most important contribution of this work. We find that there are stable objects in relatively large regions of the parameter space. In particular, there are stable regular black holes for all values of the parameter $ω$ of interest. Other stable ultracompact objects as quasiblack holes, gravastars, and even overcharged stars are allowed in certain regions of the parameter space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源