论文标题
kPz方程的短时间大偏差
Short time large deviations of the KPZ equation
论文作者
论文摘要
我们为随机热方程式建立了弗里德林 - 温特大偏差原理(LDP),并在一个空间尺寸中具有乘法噪声。也就是说,我们向噪声引入了一个小参数$ \ sqrt {\ varepsilon} $,并为解决方案的轨迹建立LDP。这样的Freidlin-Wentzell LDP就变异问题提供了KPZ方程的短时,单点的LDP。在狭窄的楔形初始数据下分析了这个变异问题,我们证明了近中心尾巴的二次定律,以及$ \ frac52 $的$ \ frac52 $法律。这些权力法律证实了现有的物理学预测Kolokolov和Korshunov(2007),Kolokolov和Korshunov(2009),Meerson,Katzav和Vilenkin(2016),Le Doussal,Majumdar,Rosso,Rosso和Schehr(2016)和Kamenev,Meerson和Sasorov(2016)。
We establish the Freidlin--Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation with multiplicative noise in one spatial dimension. That is, we introduce a small parameter $ \sqrt{\varepsilon} $ to the noise, and establish an LDP for the trajectory of the solution. Such a Freidlin--Wentzell LDP gives the short-time, one-point LDP for the KPZ equation in terms of a variational problem. Analyzing this variational problem under the narrow wedge initial data, we prove a quadratic law for the near-center tail and a $ \frac52 $ law for the deep lower tail. These power laws confirm existing physics predictions Kolokolov and Korshunov (2007), Kolokolov and Korshunov (2009), Meerson, Katzav, and Vilenkin (2016), Le Doussal, Majumdar, Rosso, and Schehr (2016), and Kamenev, Meerson, and Sasorov (2016).